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Abstract

In Industrial Internet of Things (IIoT), a large volume of data is collected periodically by IoT devices, and timely data routing and processing are
important requirements. Age of Information (AoI), which is a metric to evaluate the freshness of status information in data processing, has become
one of the most important objectives in IIoT. In this paper, considering limited communication, computation and energy resources on IoT devices,
we jointly study the optimal AoI-aware energy control and computation offloading problem within a dynamic IIoT scenario with multiple IoT
devices and multiple edge servers. Based on extensive analysis of real-life IoT dataset, Markovian queueing models are constructed to capture the
dynamics of IoT devices and edge servers, and their corresponding analyses are provided. With the quantitative analytical results, we formulate
a dynamic Markov decision problem with the objective of minimizing the long-term energy consumption while satisfying AoI constraints for
real-time data processing. To solve the problem, we apply Deep Reinforcement Learning (DRL) techniques for adapting to large-scale dynamic
IIoT environments, and design an intelligent Energy Control and Computation Offloading (ECCO) algorithm. Extensive simulation experiments
are conducted based on real-world dataset, and the comparison results illustrate the superiority of our ECCO algorithm over both existing DRL
and non-DRL algorithms.
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1. Introduction

Recently, Industrial Internet of Things (IIoT) has emerged
as a novel technology that brings wireless communication and
intelligent control to manufacturing [1]. With more and more
industrial applications with the capability of data sensing, real-
time processing and intelligent decision making being deployed,
the requirement on real-time Quality of Service (QoS) has been
growing rapidly, which brings significant challenges to the de-
sign and management of the underlying infrastructure.

In order to process the sensing data in a real-time manner,
a novel architecture namely edge computing is introduced in
most IIoT systems. It deploys edge servers with computing
capacities at the edge of the network (base stations). Delay-
sensitive requests can be determined to be offloaded to a nearby
edge server via wireless channel [2], and thus the traffic at the

∗Corresponding author
Email addresses: huangjw@cup.edu.cn (Jiwei Huang),

2021211248@student.cup.edu.cn (Han Gao),
shaohua.wan@uestc.edu.cn (Shaohua Wan), chenying@bistu.edu.cn
(Ying Chen)

core network and the delay for transmitting user data can be re-
duced especially for data-intensive industrial applications [3].
In edge computing, networking and computing are combined,
and whether to offload the tasks to an edge server should be
carefully decided according to QoS requirements, networking
status, and energy supplies [4].

In IIoT, a wide range of smart devices continuously gen-
erate a large amount of status or event data. The IIoT sys-
tem has to process the data, analyze the status, and then react
accordingly. IIoT applications require low latency to ensure
timely statistics and analysis of real-time data. Besides tradi-
tional QoS, a new metric namely Age of Information (AoI) has
been proposed recently, which is to evaluate the freshness of
the status information of physical processes [5, 6]. AoI intro-
duces data semantics into traditional performance evaluation,
and thus has become increasingly popular in the design and
optimization of IoT systems. Quantitatively, it can be defined
as the time elapsed from the status information being collected
from the source node (IoT device) to the data being processed
[7]. However, minimizing AoI is a challenging task in IIoT.
Since IoT devices commonly have very limited computing and
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energy resources [8, 9, 10], while the computation capability of
edge servers is also commonly bounded, how to dynamically
allocate the limited resources and schedule the tasks according
to the environments for obtaining a long-term minimization of
AoI still remains largely unexplored.

In this paper, we make an attempt at filling this gap by in-
troducing Deep Reinforcement Learning (DRL) to energy con-
trol and computation offloading for AoI optimization in IIoT.
We carry out extensive analyses on dataset collected from real-
world mobile network operators, and propose queueing models
for both IoT devices and edge servers. With queueing theory,
delays, AoI as well as energy consumption are quantitatively
evaluated. Then, we formulate a dynamic optimization prob-
lem of AoI-aware energy control and computation offloading by
Markov Decision Process (MDP). To solve the problem in a dy-
namic IIoT network environment, we apply DRL technique and
design an intelligent Energy Control and Computation Offloading
(ECCO) algorithm. Simulations are conducted based on real-
life data, and the experimental results illustrate the superiority
of our ECCO algorithm over both existing DRL and non-DRL
algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we survey the related work most pertinent to this paper.
In Section 3, we propose the system model for capturing the
dynamics of an IIoT system and conduct quantitative analyses.
In Section 4, we formulate the dynamic optimization problem
and describe our ECCO algorithm. In Section 5, we evaluate
the performance of our approach experimentally. Finally, we
conclude this paper in Section 6.

2. Related Work

AoI has been recently proposed to describe the freshness of
status information, which is considered as a key metric in per-
formance evaluation of information systems. Formally, AoI is
defined as the time elapsed from the source node generating the
status information to the target node successfully receiving the
data. Kaul et al. [5] studied the AoI theoretically by proposing
a single-server Markovian queueing model. In their mathemat-
ical analysis, the data packets were assume to be a Poisson ran-
dom process, and data transmission was formulated as the ser-
vice processes. With the analytical results, the frequency of sta-
tus updating was discussed. Champati et al. [11] attempted to
obtain the minimum AoI in a single-source and single-service
queueing model when service time can be a general distribu-
tion. Recently, there are some existing works introducing AoI
analysis or optimization to some specific IoT scenarios. Qian et
al. [12] have derived a policy-independent lower bound on the
long-term average AoI in a multi-channel IoT system and pro-
posed a matching strategy to optimize the AoI. Lou et al. [13]
investigated the relationship between system AoI and through-
put in a multi-hop wireless network. Zhang et al. [14] stud-
ied the effect of edge caching on AoI, proposed a cache update
strategy based on refresh windows, and derived the approximate
expressions for the average AoI and latency.

Besides data transmission, some researchers paid their at-
tention to the processing of the updated status information when

studying the AoI issue. It has been accepted that the data pro-
cessing time could be also part of the AoI in quantitative analy-
sis. Arafa et al. [15] considered the service time for computing
status updates information and showed that preemptive updates
are beneficial for minimizing the AoI after it reaches a certain
threshold. Song et al. [16] proposed a similar metric namely
task age as their minimization objective, and designed an age-
based task scheduling and computational offloading scheme in
mobile edge computing systems.

Recently, there have been several works that tried to gen-
eralize the basic concept of AoI to be applied in data semantic
modeling and design patterns for IoT. Chiariotti et al. [17] pro-
posed the concept of Age of Information Query (QAoI), which
is defined as the freshness of information at a query instance.
Such measurement is quite valuable in pull-based communica-
tion scenarios (e.g., satellite communication) where the com-
munication channel is time-varying, and the channel error rate
is high. Maatouk et al. [18] presented a metric called Age
of Incorrect Information (AoII), which measures the aging de-
gree of destination information since the latest update of the
source data. They focused on the content of the data, which is a
promising area of the AoI study in data semantics. Moskowitz
et al. [19] proposed Value of Information (VoI), to measure the
usefulness of information for a certain specific goal. They stud-
ied and evaluated the value of data, according to which more
computational or storage resources should be allocated to high-
value data items instead of redundant or low-utility data items.

In IoT, the power supply of the IoT devices is commonly
from the batteries (rechargeable or non-rechargeable). With
such limited energy resources, the efficient energy consump-
tion is a critical concern. A few existing works tried to op-
timize the energy efficiency in communication or computing
when studying AoI in IoT. Ceran et al. [20] derived an optimal
channel transmission strategy for energy limited IoT devices,
with the objective of minimizing the average AoI of the system.
Kuang et al. [21] studied the AoI optimization for computation-
intensive applications, where mobile edge computing was intro-
duced for processing the data at the edge of the network. Opti-
mal Schemes of computation offloading and network resource
management were proposed.

With the rapid development and growing popularity of IoT,
traditional optimization algorithms face challenging in extremely
high complexity and search space [22, 23]. DRL has been in-
troduced for solving problems with large state or/and action
space. Xu et al. [24] applied deep reinforcement learning
in task offloading for UAV-assisted IoT systems. Chen et al.
[25] proposed a multi-task DRL algorithm of resource alloca-
tion for reducing service latency. Lee et al. [26] applied DRL
to resource allocation in dynamic wireless networks. Chen et
al. [27] proposed the DRL algorithm to solve the problem of
the collaborative and dynamic task offloading for IoT devices.
Chen et al. [28] transformed the optimal resource management
problem into a Markov decision process (MDP) and designed
a dynamic resource management algorithm based on DRL to
solve this problem in mobile edge computing scenarios. Abd-
Elmagid et al. [29] used DRL to jointly optimize the wireless
energy transfer and scheduling of update packet transmissions
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with the objective of minimizing the long-term average AoI.
Though these approaches can model and optimize AoI, the

AoI issue in IIoT remains largely unexplored. In IIoT, multiple
IoT devices connect to the edge servers with bursty workload.
With limited energy resources on the devices, how to efficiently
transmit or/and process sensing data while keeping information
updated especially in large-scale dynamic IIoT environment is
a challenging task. Our ECCO approach, to be described next,
is designed to fill this gap.

3. System Model and Problem Formulation

3.1. Scenario
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Figure 1. Scenario of an IIoT system.

In this paper, we consider an IIoT scenario where there are
multiple IoT devices and edge servers, shown as Fig. 1. Each
IoT device connects to a certain edge server through the wire-
less network. We consider that the communication between
IoT device and edge server is performed via a frequency di-
vision multiple access (FDMA) scheme and the channels are
pre-assigned [30]. Therefore, there is no interference between
different IoT devices. We assume that there is no overlapping
area among the base stations, and thus the network management
and task scheduling can be treated in a parallel way. Each group
consists of a set of N = {1, 2, ...,N} IoT devices and one edge
server where there are a set of C = {1, 2, ..., c} virtual machines
deployed for data processing.

Each IoT device collects sensing data and generates a se-
ries of system status updates. This paper considers a discrete
time slot system where time is divided into equal-length time
slots. Upon arrival of the requests from an IoT device, our ob-
jective is to dynamically choose its local processor or an edge
server to handle the status updates according to the network en-
vironment at each time slot t. For the local processing, certain
amount of energy has to be consumed on the IoT device; while
for edge processing, the IoT device has to transmit its data to
the edge server at the base station and request the edge server
for processing, which also takes energy consumption, commu-
nication delay and processing time. The trade-off should be

carefully addressed in order to obtain optimal energy efficiency
while keeping the data fresh.

3.2. System Model

3.2.1. Workload model

Tasks are initiated from IoT devices in an IIoT system. It
has been commonly accepted in existing related literature that
the task arrivals can be approximated by a Poisson process [31].
We also analyze a dataset collected by Shanghai Telecom in
China, which contains over 7.2 million records of user service
behaviors on 3,233 based stations in the year of 2014 [32, 33].
We find from the real-life dataset that the interarrival times con-
form to exponential distribution. We defer readers to Section 5
for detailed analytical results.

At the beginning of time slot t, the probability that IoT de-
vice i chooses to offload its requests to the edge server is de-
noted by PS

i (t), where 0 ≤ PS
i (t) ≤ 1. With the property of Pois-

son process, we know that the task arrivals at the edge server
also follow a Poisson process with an average rate of PS

i (t)λi.
Meanwhile, the arrival rate of status updates being processed at
the local IoT device can be expressed by (1 − PS

i (t))λi.
The average data size of requests generated from the i-th

IoT device is expressed by θi. Similar to existing works, we
assume that the size of workload (data) conforms to an expo-
nential distribution.

3.2.2. Computation model

a) Local computing model: Some lightweight workload can
be handled locally at the IoT device. Since there is no data
communications, we only have to calculate the processing time
spent with the status information from the IoT devices. With
the workload model, the IoT device can be formulated by an
M/M/1 queueing model. With queueing theory, the average re-
sponse time T A

i (t) for locally processed requests on IoT device
i is expressed by (1), where µA

i is the service rate indicating the
computing capability of IoT device i.

T A
i (t) =

1
µA

i − (1 − PS
i (t))λi

, i ∈ N . (1)

b) Edge computing model: Multiple IoT devices connect to
the edge server, and thus their requests may be converged at the
edge node. We have known that each IoT device submits its re-
quests to the edge server following a Poisson distribution. The
superposition of all the Poisson processes from the IoT devices
is also a Poisson process, with the arrival rate shown by,

λA
total(t) =

N∑
i=1

PS
i (t)λi. (2)

For avoiding queue congestion which may result in unex-
pected performance degradation, there might be an access con-
trol scheme limiting the maximum workload on the edge server
for stabling the queue status. We let λS

max denote the maximum
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arrival rate at the edge server. Therefore, the arrival rate at the
edge server can be expressed as follows.

λS
p (t) =

λA
total(t), λ

A
total(t) ≤ λ

S
max

λS
max, λA

total(t) > λ
S
max,

(3)

It should be noted that the edge server has c homogeneous
virtual machines, which can handle multiple status updates re-
quests from IoT devices simultaneously. We assume that the
service rate of each virtual machine is denoted by µS . There-
fore, the edge server can be modeled by an M/M/c queue. Its
utilization can be calculated by the following equation.

ρS (t) =
λS

p (t)

cµS . (4)

The average waiting time for processing the requests con-
tains queueing time and service time. The average queueing
time for each status updates in the edge server is:

Tw(t) =
G(t)

cµS − λS
p (t)
, (5)

where,

G(t) =
(cρS (t))c

c!
1

1−ρS (t)∑c−1
k=0

(cρS (t))k

k! +
(cρS (t))c

c!
1

1−ρS (t)

. (6)

Eq. (6) is also known as Erlang’s formula.
The average service time in the edge server can be expressed

as follows:
Ts =

1
µS . (7)

From (5), (6), and (7), the average waiting time for compu-
tation offloading can be expressed as:

T S
wait(t) = Tw(t) + Ts. (8)

3.2.3. Communication model

If the IoT devices choose to offload the status updates in-
formation to the edge server, additional data transmission time
is incurred. At time slot t, the transmission power of IoT de-
vice i is denoted by Pi(t), 0 < Pi(t) < Pmax

i , where Pmax
i is

the maximum transmission power of IoT device i. The channel
power gain between the i-th IoT device to the edge server is hi.
Then, according to Shannon Theorem which has been widely
applied in performance evaluation of data transmission [7, 28],
we can obtain the uplink data transmission rate for the IoT de-
vice i computation offloading as follows:

Ri(t) = ωlog2(1 +
Pi(t)hi

σ2 ), (9)

where ω is the wireless channel bandwidth and σ2 is average
Gaussian white noise. Similar to existing works [34], in order
to facilitate the analysis, we assume that the wireless channels
are shared orthogonal among different IoT devices. From (9)

we can obtain that the transmission time for IoT device i com-
putation offloading is expressed as follows:

T t
i (t) =

(PS
i (t)λi)θi
Ri(t)

, (10)

Commonly, similar to most of the previous works [7, 35],
the size of the calculating results is relatively small to the orig-
inal data size, and thus the time for sending back the result and
the corresponding energy consumption can be ignored.

3.2.4. AoI model

AoI has recently been proposed to describe the freshness of
status information in data processing. Formally, in this paper,
we define AoI as the time consumed from the generation of
status information at an IoT device to the completion of data
processing at either the IoT device or the edge server.

With the mathematical models presented above, specifically
with (1), (8) and (10), the AoI at time slot t can be quantified
as,

TAOI(t) = Ti(t) + TS (t), (11)

where Ti(t) is the time consumed by local processing to process
and send status updates, Ti(t) is expressed as follows:

Ti(t) = (1 − PS
i (t))T A

i (t) + PS
i (t)T t

i (t). (12)

The second part of the AoI on the right-hand side of (11) is the
time consumed by the edge server to process the status infor-
mation, which can be expressed as:

TS (t) = PS
i (t)T S

wait(t). (13)

Thus, from (11) we can obtain the average AoI as follows:

TAOI =
1
N

1
T

N∑
i=1

T∑
t=1

{TAOI(t)} (14)

=
1
N

1
T

N∑
i=1

T∑
t=1

{(1 − PS
i (t))

1
µA

i − (1 − PS
i (t))λi

+ PS
i (t)(

(PS
i (t)λi)θi

ωlog2(1 + Pi(t)hi
σ2 )

)

+ PS
i (t)(

(cρS (t))c

c!
1

1−ρS (t)∑c−1
k=0

(cρS (t))k
k! +

(cρS (t))c
c!

1
1−ρS (t)

cµS − λS
p (t)(t)

+
1
µS )}. (15)

3.2.5. Energy model

The energy consumption on the i-th IoT device basically
consists of two parts, including (1) the energy consumed for lo-
cal processing of the status information, and (2) the power con-
sumed by transmitting sensing data to the edge servers. For the
first part, the energy consumption for data processing is closely
related to the CPU frequency of the IoT device. It has been
widely accepted that the energy consumption in time slot t can
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be calculated by (16) where f is the CPU frequency of IoT de-
vices and κi is the effective capacitance parameter of IoT device
i.

EA
i (t) = κi f 3T A

i (t), (16)

For the second part, transmission power consumption can be
calculated by the product of the power rate Pi(t) and the trans-
mission time T t

i (t). Formally, it can be expressed as:

ES
i (t) = Pi(t)T t

i (t) = Pi(t)
PS

i (t)λiθi

Ri(t)
. (17)

According to (16) and (17), the average energy consumption in
the IIoT system can be expressed as follows:

Eave =
1
N

1
T

N∑
i=1

T∑
t=1

{(1 − PS
i (t))EA

i + PS
i (t)ES

i } (18)

=
1
N

1
T

N∑
i=1

T∑
t=1

{(1 − PS
i (t))
 κi f 3

µA
i − (1 − PS

i (t))λi


+ PS

i (t)(Pi(t)
PS

i (t)λiθi

ωlog2(1 + Pi(t)hi
σ2 )

)} (19)

3.3. Problem Formulation

In IIoT, our goal of network resource management and com-
putation offloading is to minimize the energy consumption on
the IoT devices while guaranteeing the freshness of the sensing
data. The network environment as well as task arrivals are time-
varying, however the objective is a long-term cumulative mini-
mization. Consequently, we formulate an optimization problem
as follows.

P1 : min
PS

i (t),Pi(t)
Eave, (20)

s.t. TAOI(t) ≤ ε,∀i ∈ N , (21)
0 ≤ PS

i (t) ≤ 1,∀i ∈ N , (22)
0 ≤ Pi(t) ≤ Pmax

i ,∀i ∈ N , (23)
(1 − PS

i (t))λi < µ
A
i ,∀i ∈ N , (24)

λS
p (t) < cµS ,∀i ∈ N . (25)

The objective function defined by (20) is minimizing the
long-term cumulative average energy consumption. Eq. (21) in-
dicates that the AoI should be bounded in an acceptable range
for keeping the sensing data fresh. Constraint (22) represents
that the offloading probability between local processing and
edge processing should be in the scope between 0 and 1, while
(23) bounds the maximum transmission power of each IoT de-
vice. Eqs. (24) and (25) guarantee the queue stability of each
IoT device and the edge server, respectively.

4. DRL-Based Algorithm Design

4.1. MDP Formulation

The problem P1 presented in the previous section is a dy-
namic optimization problem. To solve the problem according

to the time-varying IIoT networking environments, we refor-
mulate P1 by a Markov Decision Process (MDP). It can be de-
noted by a four-tuple {S,A,R,T }, where S represents the sys-
tem states, A indicates the action space, R is the reward func-
tions, and T = p(S (t+1)|S (t), A(t)) is the transition probability
between states.

4.1.1. State Space

At each time slot t, the system state S (t) = (Θs(t),Θe(t)) is
defined as a two-tuple indicating the queueing states of the IoT
devices and the edge server respectively. The specific defini-
tions are shown as follows.

• Θs(t) is defined as the number of requests waiting to be
processed at each IoT device, which can be expressed
by (26) where Qsi(t) denotes the number of tasks in the
buffer of IoT device i.

Θs(t) = {Qs1(t),Qs2(t), ...,Qsi(t), ...,QsN(t)}, (26)

• Θe(t) is the queueing state of the edge server, expressed
as:

Θe(t) = {Qe1(t),Qe2(t), ...,Qe j(t), ...,Qec(t)}, (27)

where Qe j(t) is the number of requests buffered at the j-th VM
on the edge server.

4.1.2. Action Space

At each time slot t, the agent performs action A(t) = (γt, δt, ϵt)
to compute the offloading decision of IoT devices based on the
current state S (t) in the system.

• γt represents the offloading probability of IoT devices,
which can be expressed as:

γt = {PS
1 (t), PS

2 (t), ..., PS
i (t), ..., PS

N(t)}. (28)

• δt represents the transmission power of IoT devices, which
can be expressed as:

δt = {P1(t), P2(t), ..., Pi(t), ..., PN(t)}. (29)

• ϵt represents the scheduling policies of IoT devices, which
can be expressed as:

ϵt = {W1(t),W2(t), ...,Wi(t), ...,WN(t)}. (30)

Therefore, the action spaceA(t) can be expressed as follows:

A(t) = {(PS
1 (t), PS

2 (t), ..., PS
i (t), ..., PS

N(t)),
(P1(t), P2(t), ..., Pi(t), ..., PN(t)),

(W1(t),W2(t), ...,Wi(t), ...,WN(t))}.
(31)
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4.1.3. Reward Function

Within the time slot t, the agent calculates the reward R(t)
after the action A(t) is performed at the state S (t). Consider-
ing that our goal is to minimize the energy consumption of the
system under the average AoI constraint, we define the reward
function as follows:

R(t) =
∑
i∈N

E [Eave(t) + TAOI(t) + Ψ(t)]. (32)

In (32), besides the energy consumption Eave(t), we put the
AoI value in the reward function for minimization in our MDP.
Meanwhile, we define a penalty function Ψ(t) to guarantee the
constrains in P1 being satisfied. Specifically, if any constraint
is unsatisfied, a positive large value will be added to our reward
function.

4.2. Deep Reinforcement Learning Algorithm

From the MDP formulation presented in the previous sub-
section, we find that our action space is three-dimensional and
continuous. With the increase of the number of IoT devices in
the system, the action space grows exponentially. Traditional
MDP algorithms such as value iteration or policy iteration or
even Approximate Dynamic Programming (ADP) techniques
may suffer from space explosion problem in solving the MDP.
To attack this challenge, we apply deep reinforcement learn-
ing for finding the optimal policy. Based on Proximal Policy
Optimization (PPO) algorithm which is a popular policy gradi-
ent method that can be used for environments with continuous
action spaces, we design an Energy Control and Computation
Offloading (ECCO) algorithm, shown by Fig. 2.

The basic idea of our approach is to introduce the tech-
niques of deep neural network for solving the original MDP
problem. We define a data structure namely “Env” to capture

the basic formulation of the MDP problem, where we let S (t)
denote the current state, r express the reward function, a repre-
sent the action, and S (t)′ denote the next state after the action
has taken. The neural networks use their experience to examine
the actions in the action space, and inference the optimal policy
for maximizing the expected long-term reward value.

In our approach, two types of deep neural networks are in-
volved, namely actor and critic. The actor maps the observation
to an action and the critic gives an expectation of the rewards of
the agent for the given state. Specifically, we deploy two actor
networks for updating the policy and we want to ensure that the
update is not too large.

Policy gradient is applied for the agent to learn, the goal
of which is to optimize the parameter ϕ to obtain the optimal
policy. We take the gradient estimator shown as below:

ĝ = Êt

[
∇ϕ log πϕ(A(t)|S (t))R̂(t)

]
, (33)

where πϕ is a stochastic parameterized policy with parameter ϕ,
and R̂(t) is an estimation of the advantage function at time slot
t.

The learning ratio is a critical concern in policy gradient.
In order to control the learning ratio in an acceptable range, we
introduce a metric to evaluation the difference between the old
and new policies, which is formally defined as (34).

rt(ϕ) =
πϕ(A(t)|S (t))
πϕold(A(t)|S (t))

(34)

The actor network bounds the update between the policies
within an acceptable ratio of ϵ. To this end, we define the loss
function of the actor network with a clip function with ratio of
ϵ, as follows:

Lclip
t (ϕ) = Êt

[
min
(
rt(ϕ)R̂(t), clip(rt(ϕ), 1 − ϵ, 1 + ϵ)R̂(t)

)]
,

(35)
6
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where Êt represents the empirical average of a sequence of sam-
ples. The clip function is designed to control the sampling range
of our reinforcement learning process. By introducing a hy-
perparameter ϵ, the update of the neural network parameters in
each epoch can be bounded in an acceptable interval [1−ϵ, 1+ϵ].

After the actor is updated, we take out the data from the
experience pool for calculation to update the critic. To do so,
we first calculate the advantage function using the following
formula:

R̂(t) = φt + (γ)φt+1 + · · · + · · · + (γ)T−t+1φT−1, (36)

where,
φt = R(t) + γV(S (t + 1)) − V(S (t)). (37)

Here, V(S (t + 1)) V(S (t)) can be obtained from the critic net-
work, and R(t) is the reward function. Then, we use mean
squared error (MSE) as the Loss function to train the Critic net-
work. Since we are taking a network architecture where actor
and critic share parameters, we have to use a loss function that
combines the policy agent and the value function error term as
follows:

Lclip+vf+s
t (ϕ) = Et

[
Lclip

t (ϕ) − c1Lv f
t (ϕ) + c2S[πϕ](S (t))

]
, (38)

where S[πϕ](S (t)) represents the entropy bonus illustrating the
possibility of the critic network globally exploring new policies,
Lv f

t (ϕ) is the MSE estimator of the advantage function of the
critic network, and c1, c2 are hyperparameters.

The details of the ECCO are given in Algorithm 1.

5. Performance Evaluation

5.1. Experimental Setup
5.1.1. Dataset

We evaluate the efficiency of our algorithm through exten-
sive experimental simulations. The workload in our experi-
ments is generated according to real-life trace data, and the edge
servers (with base stations) are placed following the geograph-
ical distribution of base stations in the city of Shanghai, China.
The dataset we use in our experiment is obtained from Shanghai
Telecom [32, 33], which contains more than 7.2 million records
of Internet access trace data through 3,233 base stations gener-
ated by 9,481 mobile users within a time period of 6 months.

Before conducting our experiments, we first analyze the
trace data to validate our workload model presented in Sec-
tion 3. We extract the timestamps of the user requests from
the dataset, and analyze the interarrival times by plotting the
probability density function (PDF) and cumulative distribution
function (CDF). The analytical results are shown by Fig. 3 and
Fig. 4. Intuitively, we find the interarrival times conform to
an exponential distribution. Furthermore, we apply non-linear
least squares estimator to generate a fitted function of the data
distribution. Coefficient of determination, also well-known as
R2, is used to statistically quantify how well the fitted function
describes the data. For both CDF and PDF, we find that expo-
nential distribution is a perfect approximation with R2 values
above 0.99. Therefore, it is reasonable for us to use Poisson
process to construct the workload model.

Algorithm 1 Energy Control and Computation Offloading
(ECCO) Algorithm
Input: Training episode number Tepi; training step number

Tstep; model update frequency U; decay factor ζ; model
update number t epochs;

Output: Offloading probability of IoT devices γt; transmission
power of IoT devices δt; scheduling policy of IoT devices
ϵt.

1: Initialize random seed, experience replay pool D, system
environment, network parameters

2: Set time steps = 0
3: for episode = 1, · · · , Tepi do
4: Reset the environment to get the initial state S (0)
5: Set reward = 0, energy = 0
6: for step = 1, · · · , Tstep do
7: Obtain action A(t) from actor network
8: Obtain the next state S (t + 1) with A(t), calculate re-

ward R(t)
9: Store ⟨S (t), A(t), S (t + 1),R(t)⟩ into D

10: if step mod U = 0 then
11: for i = 1, · · · , t epochs do
12: Randomly sample s data from D
13: Calculate the decay reward discount reward =

r + ζ ∗ discount reward
14: r ⇐ discount reward
15: Calculate the advantage function using Eq. (36)
16: Calculate optimization objectives using Eq. (38)
17: Update network parameters ϕ
18: end for
19: Save the updated network parameters Πold ⇐ Πϕ
20: end if
21: end for
22: end for

5.1.2. Experimental Parameters

In our simulation experiments, we assume that there are 4
virtual machines deployed on each edge server. The tasks are
generated according to the Telecom dataset, and the size of each
task (size of updated sensing data) is a random variable fol-
lowing a uniform distribution in the range from 1MB to 5MB.
We set that the CPU frequency of IoT device is 1GHz while
the CPU frequency of the edge server is 4.4GHz. The wireless
channel bandwidth is set to be 1MHz. The detailed parameter
settings about the system are shown in Table 1.

5.2. Experimental Results

In the following experiments, we compare our ECCO al-
gorithm with three existing DRL algorithms which have been
widely used in solving dynamic optimization problems with
continuous action space, listed as follows.

• DDPG: Deep Deterministic Policy Gradient (DDPG) is
a popular DRL algorithm whose main idea is to use the
critic network to find the possibly optimal decision (POD),

7
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Figure 3. PDF of the interarrival time of an IoT device
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Figure 4. CDF of the interarrival time of an IoT device

and subsequently use the POD to optimize the policy ac-
tor network. The generation of the policy is completely
dependent on the critic network without caring about the
actual benefits.

• SAC: Soft Actor-Critic (SAC) is an off-policy DRL al-
gorithm with a stochastic actor. The actor network in the
SAC algorithm aims to maximize the gain and the en-
tropy at the same time. By combining off-policy updates
with a stable stochastic actor-critic formulation, SAC is
stable in taking optimal actions in dynamic environments.

• TD3: Twin Delayed Deep Deterministic Policy Gradient
(TD3) is designed to solve the overestimation problem on
Q-values in DDPG. It uses two sets of networks to rep-
resent different Q values, and suppresses persistent over-
estimation by choosing the smallest one as the updated
target. It also adds noise to the output action A of the
actor target network to improve the algorithm stability.

Table 1. IIoT Parameter Settings

Notations Definitions Value

C number of VMs 4

θ task size 1MB∼5MB

f
the computational frequency of

IoT devices 1GHz

µS
the computational frequency of

edge server 4.4GHz

ω bandwidth of IoT device 1MHz

pmax
i

the max transmission power of
IoT device 100mW

σ2 Gaussian white noise -100dBm

0 100 200 300 400 500
Episode

100

80

60

40

20

Re
wa

rd

200 225 250 275 300

40

30

ECCO
DDPG
TD3
SAC

Figure 5. Reward comparisons of different DRL algorithms during training

We train our ECCO algorithm as well as the other three
DRL algorithms for 500 iterations, and examine the experimen-
tal results to compare the convergence rate and performance of
the four approaches. Fig. 5 shows the reward values in the first
500 epochs. We should note that, in order to facilitate our ex-
periments, we define the reward function as the negative sum-
mation of the energy consumption, AoI and the penalty and
thus convert the original problem into a traditional reward max-
imization problem. We obtain from the experimental results
that our ECCO algorithm and the TD3 algorithm gradually con-
verge during the first 20 epochs, and ECCO is slightly faster in
convergence rate. The DDPG algorithm tends to converge with
a slower speed, while the SAC algorithm does not converge in
500 iterations. Among all the four algorithms, our ECCO ob-
tains the highest reward on average and its performance is the
most stable.

Fig. 6 illustrates the average energy consumption of the four
algorithms during the first 500 training iterations. We have the
similar conclusion. The SAC algorithm is not able to stabilize
in 500 epochs, while the DDPG algorithm and TD3 converge
at similar speed but have a higher average energy consumption.

8
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Figure 6. Energy consumption comparisons of different DRL algorithms during
training

Our ECCO algorithm performs best in both convergence rate
and energy consumption minimization.

Then, we tune the parameters to see their impact to the ob-
tained policy. In order to further validate the performance of
our approach, we further introduce a non-DRL random algo-
rithm for comparison where tasks are randomly scheduled to
either local IoT device or the edge server. Fig. 7 illustrates the
experimental results when we tune the parameter of maximum
transmission power Pmax

i . Here, the dots and solid lines indi-
cate the average values, while the shade areas represents the
variation in different experimental tryouts. With the increase of
Pmax

i , the constraint on the networking communication power is
relaxed, and hence the IoT device may choose higher transmit-
ting rate in order to reduce AoI, resulting in the overall energy
consumption going up. Among all the five schemes, random al-
gorithm performs the worst because it is not intelligent to make
optimal decisions. Although SAC is good at reducing the en-
ergy consumption, it is the most unstable. Our ECCO algorithm
performs the best in terms of energy minimization and its sta-
bility is also acceptable.

Fig. 8 shows the average energy consumption of the IoT
devices with different AoI constraints. With the increase of ε,
less penalty will be paid to the growth of AoI, and thus the
IoT device may choose to process or transit data with lower
speed for energy reduction. Therefore, the average energy con-
sumption decreases in most experiments. Also, the experimen-
tal results prove that our ECCO algorithm always has the best
performance in terms of energy reduction.

6. Conclusion

In this paper, we study the optimal AoI-aware network re-
source management and computation offloading problem within
a dynamic IIoT scenario with multiple IoT devices and multi-
ple edge servers. Considering the IoT devices with limited net-
working, computing and energy resources, we construct a dy-
namic optimization problem for minimizing the long-term av-

0.02 0.04 0.06 0.08 0.10
Maximum Transmission Power Pmax

i

0

20

40

60

80

Av
er

ag
e 

En
er

gy
 C

on
su

m
pt

io
n 

(J) ECCO
RAND
DDPG 
TD3
SAC

Figure 7. Average energy consumption with different transmission power
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Figure 8. Average energy consumption with different AoI threshold
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erage computation energy consumption under the average AoI
constraint. Mathematical models are presented for performance
evaluation, and a DRL-based algorithm is designed for dynamic
optimization. We conduct simulation experiments based on re-
alistic telecommunication data, and the comparison results val-
idate the efficacy of our approach.
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